## Exercise 13

Consider the point $(x, y)$ lying on the graph of the line $2 x+4 y=5$. Let $L$ be the distance from the point $(x, y)$ to the origin $(0,0)$. Write $L$ as a function of $x$.

## Solution

The distance from $(x, y)$ to $(0,0)$ is given by

$$
\begin{align*}
L & =\sqrt{(0-x)^{2}+(0-y)^{2}} \\
& =\sqrt{(-x)^{2}+(-y)^{2}} \\
& =\sqrt{x^{2}+y^{2}} . \tag{1}
\end{align*}
$$

Solve the given equation for $y$.

$$
\begin{aligned}
& 2 x+4 y=5 \\
& 4 y=5-2 x \\
& y=\frac{5}{4}-\frac{1}{2} x
\end{aligned}
$$

Therefore, equation (1) becomes

$$
\begin{aligned}
L & =\sqrt{x^{2}+\left(\frac{5}{4}-\frac{1}{2} x\right)^{2}} \\
& =\sqrt{x^{2}+\left[\frac{25}{16}-2\left(\frac{5}{4}\right)\left(\frac{1}{2}\right) x+\frac{1}{4} x^{2}\right]} \\
& =\sqrt{x^{2}+\frac{25}{16}-\frac{5}{4} x+\frac{1}{4} x^{2}} \\
& =\sqrt{\frac{5}{4} x^{2}-\frac{5}{4} x+\frac{25}{16}} \\
& =\sqrt{\frac{5}{16}\left(4 x^{2}-4 x+5\right)} \\
& =\frac{\sqrt{5}}{4} \sqrt{4 x^{2}-4 x+5} .
\end{aligned}
$$

